Anónimo
Anónimo preguntado en Ciencias y matemáticasBiología · hace 1 década

¿Què es un giroscopio?

5 respuestas

Calificación
  • ramon
    Lv 4
    hace 1 década
    Respuesta preferida

    Giróscopo

    1 INTRODUCCIÓN

    Giróscopo, también llamado giroscopio, cualquier cuerpo en rotación que presenta dos propiedades fundamentales: la inercia giroscópica o “rigidez en el espacio” y la precesión, que es la inclinación del eje en ángulo recto ante cualquier fuerza que tienda a cambiar el plano de rotación. Estas propiedades son inherentes a todos los cuerpos en rotación, incluida la Tierra. El término giróscopo se aplica generalmente a objetos esféricos o en forma de disco montados en un soporte cardánico, de forma que puedan girar libremente en cualquier dirección; estos instrumentos se emplean para demostrar las propiedades anteriores o para indicar movimientos en el espacio. A veces se denomina girostato a un giróscopo que sólo se puede mover en torno a un eje de giro. En casi todas sus aplicaciones prácticas, los giróscopos están restringidos o controlados de esta forma. A veces se añade el prefijo giro al nombre de la aplicación, por ejemplo, giroestabilizador o giropiloto.

    2 INERCIA GIROSCÓPICA

    La rigidez en el espacio de un giróscopo es consecuencia de la primera ley del movimiento de Newton, que afirma que un cuerpo tiende a continuar en su estado de reposo o movimiento uniforme si no está sometido a fuerzas externas (véase Mecánica). Así, el volante de un giróscopo, una vez que empieza a girar, tiende a seguir rotando en el mismo plano en torno al mismo eje espacial. Un ejemplo de esta tendencia es una bala de fusil, que —al girar en torno a su eje durante el vuelo— presenta inercia giroscópica, y tiende a mantener una trayectoria más recta que si no girara. La mejor forma de mostrar la rigidez en el espacio es mediante un modelo de giróscopo formado por un volante montado sobre anillos de forma que el eje del volante pueda adoptar cualquier ángulo en el espacio. Por mucho que se mueva, incline o ladee el giróscopo, el volante mantendrá su plano de rotación original mientras siga girando con suficiente velocidad para superar el rozamiento de los rodamientos sobre los que va montado.

    Los giróscopos constituyen una parte importante de los sistemas de navegación automática o guiado inercial en aviones, naves espaciales, misiles teledirigidos, cohetes, barcos y submarinos. Los instrumentos de guiado inercial de esos sistemas incluyen giróscopos y acelerómetros que calculan de forma continua la velocidad y dirección exactas del vehículo en movimiento. Estas señales son suministradas a un ordenador o computadora, que registra las desviaciones de la trayectoria y las compensa. Los vehículos de investigación y misiles más avanzados también se guían mediante los llamados giróscopos láser, que no son realmente dispositivos inerciales, sino que emplean haces de luz láser que giran en sentido opuesto y experimentan modificaciones cuando el vehículo cambia de dirección. Otro sistema avanzado, denominado giróscopo de suspensión eléctrica, emplea una esfera hueca de berilio suspendida en un soporte magnético. El resto del artículo está referido al giróscopo convencional.

    3 PRECESIÓN

    Cuando una fuerza aplicada a un giróscopo tiende a cambiar la dirección del eje de rotación, el eje se desplaza en una dirección que forma un ángulo recto con la dirección de aplicación de la fuerza. Este movimiento es causado a la vez por el momento angular del cuerpo en rotación y por la fuerza aplicada. Un ejemplo sencillo de precesión se puede observar en un aro infantil. Para hacer que el aro dé la vuelta a una esquina, no se aplica una presión a la parte delantera o trasera del aro, como podría esperarse, sino sobre la parte superior. Esta presión, aunque se aplica en torno a un eje horizontal, no hace que el aro se caiga, sino que realice un movimiento de precesión en torno al eje vertical, con lo que el aro da la vuelta y sigue rodando en otra dirección.

    4 APLICACIONES DEL GIRÓSCOPO

    La inercia giroscópica y la fuerza de la gravedad se pueden emplear para hacer que el giróscopo funcione como indicador direccional o brújula. Si se considera un giróscopo montado en el ecuador de la Tierra, con su eje de giro situado en el plano este-oeste, el giróscopo seguirá apuntando en esa dirección a medida que la Tierra gira de oeste a este. Así, el extremo oriental ascenderá en relación a la Tierra, aunque seguirá apuntando en la misma dirección en el espacio. Si se fija un tubo parcialmente lleno de mercurio a la estructura del dispositivo giroscópico, de forma que el tubo se incline a medida que lo hace el eje del giróscopo, el peso del mercurio en el extremo occidental, más bajo, aplica una fuerza sobre el eje horizontal del giróscopo. Éste se resiste a dicha fuerza y efectúa un movimiento de precesión en torno al eje vertical, hacia el meridiano. En la brújula giroscópica o girocompás, las fuerzas de control se aplican de forma automática en la dirección y con la magnitud apropiadas para que el eje del giróscopo busque y mantenga el meridiano verdadero, es decir, para que apunte en dirección norte-sur.

    Fuente(s): Microsoft ® Encarta ® Biblioteca de Consulta 2002. © 1993-2001 Microsoft Corporation. Reservados todos los derechos.
  • hace 7 años

    jgbcsfbbcbcbcrcccccccccccccccccccccccccccccyrrrryryyr esto es el tiopoe de

  • hace 1 década

    jhyuyhhjhjkjkj

  • hace 1 década

    Giróscopo

    De Wikipedia, la enciclopedia libre

    Saltar a navegación, búsqueda

    GiróscopoEl giroscopio o giróscopo es un dispositivo mecánico formado esencialmente por un cuerpo con simetría de rotación que gira alrededor de su eje de simetría. Cuando se somete el giroscopio a un momento de fuerza que tiende a cambiar la orientación del eje de rotación su comportamiento es aparentemente paradójico ya que el eje de rotación, en lugar de cambiar de dirección como lo haría un cuerpo que no girase, cambia de orientación en una dirección perpendicular a la dirección "intuitiva".

    El giroscopio fue inventado en 1852 por Léon Foucault, quien también le dio el nombre, montando una masa rotatoria en un soporte de Cardano para un experimento de demostración de la rotación de la tierra. La rotación ya había sido demostrada con el péndulo de Foucault. Sin embargo no comprendía el por qué la velocidad de rotación del péndulo era más lenta que la velocidad de rotación de la tierra por un factor , donde representa la latitud en que se localiza el péndulo. Se necesitaba otro aparato para demostrar la rotación de la tierra de forma más simple. Foucault presentó así un aparato capaz de conservar una rotación suficientemente rápida (150 a 200 vueltas por minuto) durante un tiempo suficiente (una decena de minutos) para que se pudiesen hacer medidas. Esta proeza mecánica (para la época) ilustra el talento de Foucault y su colaborador Froment en mecánica.

    Foucault también se dio cuenta de que su aparato podía servir para indicar el Norte. En efecto, si se impiden ciertos movimientos del soporte del giroscopio, este se alinea con el meridiano. Esto permitió la invención del girocompás.

    Los giroscopios se han utilizado en girocompases y giropilotos. Los giroscopios también se han utilizado para disminuir el balanceo de navíos, para estabilizar plataformas de tiro y para estabilizar plataformas inerciales sobre las cuales están fijados captadores de aceleración para la navegación inercial en aviones y misiles construidos antes de la aparición del GPS. El efecto giroscópico es la base del funcionamiento de los juguetes trompo o peonza y dynabee

    El efecto giroscópico [editar]

    Cuando se empuja el lado derecho hacia abajo, este, en lugar de bajar, se mueve hacia el observador.Supongamos un giroscopio formado por un disco montado sobre un eje horizontal, alrededor del cual el disco gira libremente a gran velocidad, como se observa en la figura de la derecha. Un observador mantiene el eje del fondo con la mano izquierda y el eje de delante con la mano derecha. Si el observador trata de hacer girar el eje hacia la derecha (bajando la mano derecha y subiendo la mano izquierda) sentirá un comportamiento muy curioso, ya que el giroscopio empuja su mano derecha y tira de su mano izquierda. El observador acaba de sentir el efecto giroscopio. Es una sensación muy sorprendente porque da la impresión de que el giroscopio no se comporta como un objeto "normal".

    Origen físico del efecto [editar]

    Cuando se da un golpecito en la extremidad de la barra horizontal se comunica a las masas una velocidad horizontal perpendicular a sus velocidades tangenciales. Vista desde arriba del dibujo de izquierda. Las velocidades de la masa de arriba están dibujadas en trazos continuos y las de la masa de abajo en punteado.

    Sea el objeto dibujado en la imagen de la derecha, formado por dos masas (en negro) de pequeñas dimensiones sujetas por una barra (en verde) en forma de T de masa despreciable y total rigidez. El centro de la T está fijado a un soporte por medio de una rótula que permite que la barra en T gire libremente alrededor de cualquier eje.

    Las masas giran rápidamente alrededor del punto fijo con una velocidad tangencial . En el momento cuando las masas pasan por la posición del dibujo se da un golpecito hacia abajo en la extremidad libre de la T. Ese golpecito es en realidad una fuerza aplicada durante un corto instante y se llama, en Física, un impulso. La barra verde transmite ese impulso a las dos masas y le da a cada una, una pequeña velocidad horizontal perpendicular a la velocidad actual. Hacia la derecha en la masa de arriba y hacia la izquierda en la masa de abajo.

    En el dibujo de la derecha aparecen las dos masas vistas desde arriba. Las velocidades comunicadas por la impulsión se suman a las velocidades corrientes. El resultado es que la velocidad de la masa de arriba se desvía ligeramente hacia la derecha y la velocidad de la masa de abajo se desvía hacia la izquierda. Y el resultado final es que el plano de rotación de las dos masas ha girado un poco hacia la derecha. O, dicho de otra manera, el eje de rotación de las dos masas ha girado hacia la derecha.

    En un giroscopio no se trata de dos masas puntuales sino de masas distribuidas sobre todo el disco o el cilindro, pero eso no cambia el fondo de la explicación. Y cuando, en lugar de darle un impulso a un giroscopio, se le aplica un momento, se puede co

  • ¿Qué te parecieron las respuestas? Puedes iniciar sesión para votar por la respuesta.
  • hace 1 década

    El giroscopio o giróscopo es un dispositivo mecánico formado esencialmente por un cuerpo con simetría de rotación que gira alrededor de su eje de simetría. Cuando se somete el giroscopio a un momento de fuerza que tiende a cambiar la orientación del eje de rotación su comportamiento es aparentemente paradójico ya que el eje de rotación, en lugar de cambiar de dirección como lo haría un cuerpo que no girase, cambia de orientación en una dirección perpendicular a la dirección "intuitiva".

    El giroscopio fue inventado en 1852 por Léon Foucault, quien también le dio el nombre, montando una masa rotatoria en un soporte de Cardano para un experimento de demostración de la rotación de la tierra. La rotación ya había sido demostrada con el péndulo de Foucault. Sin embargo no comprendía el por qué la velocidad de rotación del péndulo era más lenta que la velocidad de rotación de la tierra por un factor , donde representa la latitud en que se localiza el péndulo. Se necesitaba otro aparato para demostrar la rotación de la tierra de forma más simple. Foucault presentó así un aparato capaz de conservar una rotación suficientemente rápida (150 a 200 vueltas por minuto) durante un tiempo suficiente (una decena de minutos) para que se pudiesen hacer medidas. Esta proeza mecánica (para la época) ilustra el talento de Foucault y su colaborador Froment en mecánica.

    Foucault también se dio cuenta de que su aparato podía servir para indicar el Norte. En efecto, si se impiden ciertos movimientos del soporte del giroscopio, este se alinea con el meridiano. Esto permitió la invención del girocompás.

    Los giroscopios se han utilizado en girocompases y giropilotos. Los giroscopios también se han utilizado para disminuir el balanceo de navíos, para estabilizar plataformas de tiro y para estabilizar plataformas inerciales sobre las cuales están fijados captadores de aceleración para la navegación inercial en aviones y misiles construidos antes de la aparición del GPS. El efecto giroscópico es la base del funcionamiento de los juguetes trompo o peonza y dynabee.

    Contenido [ocultar]

    1 El efecto giroscópico

    1.1 Origen físico del efecto

    1.2 Bicicleta

    2 Movimientos del giroscopio

    2.1 Precesión

    2.2 Nutación

    3 Referencias

    4 Véase también

    5 Enlaces externos

    El efecto giroscópico [editar]

    Cuando se empuja el lado derecho hacia abajo, este, en lugar de bajar, se mueve hacia el observador.Supongamos un giroscopio formado por un disco montado sobre un eje horizontal, alrededor del cual el disco gira libremente a gran velocidad, como se observa en la figura de la derecha. Un observador mantiene el eje del fondo con la mano izquierda y el eje de delante con la mano derecha. Si el observador trata de hacer girar el eje hacia la derecha (bajando la mano derecha y subiendo la mano izquierda) sentirá un comportamiento muy curioso, ya que el giroscopio empuja su mano derecha y tira de su mano izquierda. El observador acaba de sentir el efecto giroscopio. Es una sensación muy sorprendente porque da la impresión de que el giroscopio no se comporta como un objeto "normal".

    Origen físico del efecto [editar]

    Cuando se da un golpecito en la extremidad de la barra horizontal se comunica a las masas una velocidad horizontal perpendicular a sus velocidades tangenciales. Vista desde arriba del dibujo de izquierda. Las velocidades de la masa de arriba están dibujadas en trazos continuos y las de la masa de abajo en punteado.

    Sea el objeto dibujado en la imagen de la derecha, formado por dos masas (en negro) de pequeñas dimensiones sujetas por una barra (en verde) en forma de T de masa despreciable y total rigidez. El centro de la T está fijado a un soporte por medio de una rótula que permite que la barra en T gire libremente alrededor de cualquier eje.

    Las masas giran rápidamente alrededor del punto fijo con una velocidad tangencial . En el momento cuando las masas pasan por la posición del dibujo se da un golpecito hacia abajo en la extremidad libre de la T. Ese golpecito es en realidad una fuerza aplicada durante un corto instante y se llama, en Física, un impulso. La barra verde transmite ese impulso a las dos masas y le da a cada una, una pequeña velocidad horizontal perpendicular a la velocidad actual. Hacia la derecha en la masa de arriba y hacia la izquierda en la masa de abajo.

    En el dibujo de la derecha aparecen las dos masas vistas desde arriba. Las velocidades comunicadas por la impulsión se suman a las velocidades corrientes. El resultado es que la velocidad de la masa de arriba se desvía ligeramente hacia la derecha y la velocidad de la masa de abajo se desvía hacia la izquierda. Y el resultado final es que el plano de rotación de las dos masas ha girado un poco hacia la derecha. O, dicho de otra manera, el eje de rotación de las dos masas ha girado hacia la derecha.

    En un giroscopio no se trata de dos masas puntuales sino de masas distribuidas sobre todo el disco o el cilindro, pero eso n

¿Aún tienes preguntas? Pregunta ahora para obtener respuestas.